Abstract
AbstractHere, we report the fabrication of transparent multichannel vertical nanotube electrode arrays for detecting cellular activity and optically imaging neuronal networks. To fabricate these transparent electrode arrays, position- and morphology-controlled ZnO nanotube arrays consisting of ultrathin nanowalls were grown on transparent graphene layers and coated with Ti/Au metal layers. Using these multichannel arrays, electrophysiological signals were individually recorded from primary mouse hippocampal neurons and recorded distinctive intracellular potential-like signals. Moreover, the transparent electrode array enabled fluorescence imaging of neuron cell bodies and neurite connections. This transparent graphene- and nanotube-based recording device is proposed to greatly increase the versatility of capabilities for investigating neuronal activity through simultaneous recording and imaging of neuron cultures.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献