Functionalized magnetic biopolymeric graphene oxide with outstanding performance in water purification

Author:

Sarkar Amit KumarORCID,Bediako John Kwame,Choi Jong-Won,Yun Yeoung-SangORCID

Abstract

AbstractGraphene oxide (GO) is an attractive material for water treatment, although its high surface energy restricts its practical application. To overcome this challenge, we have developed a well-dispersed and interconnected, functionalized biopolymeric GO with magnetic activity, namely, cl–CS–p(MA)/Fe3O4NPs. This three-dimensional, sponge-like nanostructured material is composed of graphene oxide nanosheets dispersed in functionalized chitosan/poly(methacrylic acid) and is cross-linked with in situ-developed Fe3O4 nanoparticles. Methacrylic acid (MA)-functionalized chitosan (CS) cross-linked with N,N-methylenebis(acrylamide) (MBA), designated as cl–CS–p(MA), facilitates the stable dispersion of GO nanosheets, providing a proper solid matrix for the generation of well-dispersed in situ Fe3O4NPs. The methodology allows for the generation of numerous binding sites with an interconnected morphology, facilitating the rapid uptake of a cationic dye in significant quantity, e.g., methylene blue (MB), which is used as a model water pollutant. In this work, the structural architecture of cl–CS–p(MA)/Fe3O4NPs was characterized with multiple approaches, and the adsorption mechanism was revealed to be an electrostatic interaction. The synthesized nanocomposite showed significant recyclability and structural stability. Adsorption equilibrium was achieved within 20 min, and the maximum adsorption capacity was 2478 mg/g for MB, surpassing the values reported for any other adsorbents to date.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3