Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators

Author:

Park Jun-Woo,Jo Seong-Chan,Kim Min-Ju,Choi Ik-Hyeon,Kim Byung Gon,Lee You-Jin,Choi Hae-Young,Kang Sung,Kim TaeYoungORCID,Baeg Kang-JunORCID

Abstract

AbstractTo obtain soft electronics, it is essential to develop high-performance and mechanically flexible energy storage at the industry level. Herein, we report flexible high-energy-density lithium-sulfur (Li–S) batteries based on all-fibrous sulfur cathodes and separators. To implement free-standing and flexible sulfur cathodes, electrically conductive single-walled carbon nanotubes (CNTs) are impregnated with cellulose nanofibers. This fibrous structure forms a 3D porous electrode with a large surface area to improve redox kinetics and achieve a high sulfur loading content without the use of a metal collector, which can then be applied in high-energy-density batteries. These flexible sulfur cathodes are combined with a commercial glass fiber separator coated with a CNT layer through a cost-effective solution process to suppress the shuttle effects of lithium–polysulfide, thereby exhibiting robust cycling stability. The prepared Li–S batteries exhibit high capacities of 940 mAh g−1 at a charge current density of 1.57 mA cm−2 and at 25 °C, and the Coulombic efficiency exceeds 90% even after 50 charge/discharge cycles. Moreover, Li-S batteries with a high gravimetric energy density of 443 Wh kg−1 per cell is achieved, and these batteries demonstrate excellent reliability in regard to electrochemical performance even under severe mechanical stress conditions for over 100 cycles.

Funder

National Research Foundation of Korea

Korea Electrotechnology Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3