Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa

Author:

Guin Satya N.,Manna KaustuvORCID,Noky Jonathan,Watzman Sarah J.ORCID,Fu ChenguangORCID,Kumar Nitesh,Schnelle Walter,Shekhar ChandraORCID,Sun YanORCID,Gooth Johannes,Felser ClaudiaORCID

Abstract

AbstractApplying a temperature gradient in a magnetic material generates a voltage that is perpendicular to both the heat flow and the magnetization. This phenomenon is the anomalous Nernst effect (ANE), which was long thought to be proportional to the value of the magnetization. However, more generally, the ANE has been predicted to originate from a net Berry curvature of all bands near the Fermi level (EF). Subsequently, a large anomalous Nernst thermopower ($${\boldsymbol{S}}_{{\boldsymbol{yx}}}^{\boldsymbol{A}}$$ S yx A ) has recently been observed in topological materials with no net magnetization but a large net Berry curvature [Ωn(k)] around EF. These experiments clearly fall outside the scope of the conventional magnetization model of the ANE, but a significant question remains. Can the value of the ANE in topological ferromagnets exceed the highest values observed in conventional ferromagnets? Here, we report a remarkably high $${\boldsymbol{S}}_{{\boldsymbol{yx}}}^{\boldsymbol{A}}$$ S yx A -value of ~6.0 µV K−1 in the ferromagnetic topological Heusler compound Co2MnGa at room temperature, which is approximately seven times larger than any anomalous Nernst thermopower value ever reported for a conventional ferromagnet. Combined electrical, thermoelectric, and first-principles calculations reveal that this high-value of the ANE arises from a large net Berry curvature near the Fermi level associated with nodal lines and Weyl points.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3