2D carbon network arranged into high-order 3D nanotube arrays on a flexible microelectrode: integration into electrochemical microbiosensor devices for cancer detection

Author:

Sun Yimin,Dong Xulin,He Hu,Zhang Yan,Chi Kai,Xu Yun,Asif Muhammad,Yang Xuan,He WenshanORCID,Liao KinORCID,Xiao FeiORCID

Abstract

AbstractIn this work, we develop a new type of mesoporous 2D N, B, and P codoped carbon network (NBP-CNW) arranged into high-order 3D nanotube arrays (NTAs), which are wrapped onto a flexible carbon fiber microelectrode, and this microelectrode is employed as a high-performance carbon-based nanocatalyst for electrochemical biosensing. The NBP-CNW-NTAs synthesized by a facile, controllable, ecofriendly and sustainable template strategy using ionic liquids as precursors possess a high structural stability, large surface area, abundant active sites, and effective charge transport pathways, which dramatically improve their electrocatalytic activity and durability in the redox reaction of cancer biomarker H2O2. Benefiting from these unique structural merits, superb electrochemical activity and good biocompatibility, the NBP-CNW-NTAs-modified microelectrode demonstrates excellent sensing performance toward H2O2 and is embedded in a homemade microfluidic electrochemical biosensor chip for the real-time tracking of H2O2 secreted from different live cancer cells with or without radiotherapy treatment, which provides a new strategy for distinguishing the types of cancer cells and evaluating the radiotherapeutic efficacy of cancer cells. Furthermore, the functional microelectrode is integrated into an implantable probe for the in situ detection of surgically resected human specimens to distinguish cancer tissues from normal tissues. These will be of vital significance for cancer diagnoses and therapy in clinical practice.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3