Photoactive conjugated polymer-based strategy to effectively inactivate RNA viruses

Author:

Qi Ruilian,Lv FengtingORCID,Zeng Yue,Shen Qi,Huang YimingORCID,Bai Haotian,Liu Libing,Wang ShuORCID

Abstract

AbstractTo efficiently combat viral infectious diseases, it is important to develop broadly applicable countermeasures, and efficient antiviral systems can be developed by elaborating the relationship of antiviral efficiency with the interactions between antiviral agents and viruses. In the present study, conjugated polymer (CP)-based photodynamic therapy was used to inhibit RNA virus infections. A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudotyped virus composed of an SARS-CoV-2 envelope coated with the S protein and luciferase RNA genome was employed to assess antiviral efficiency. Three cationic CPs with different backbone structures, fluorene-co-phenylene (PFP), thiophene (PMNT), and phenylene vinylene (PPV), exhibit different photoinactivation effects. The highly efficient photoinactivation of PPV and PMNT is derived from the complete photodegradation of spike proteins, nucleocapsid proteins and nucleic acids of SARS-CoV-2 after binding to the viral spike proteins. Although PFP showed the highest efficiency in the photodegradation of spike proteins due to its strong binding affinity, ineffective viral inhibition was observed, which occurred because the viral gene was partially damaged under light irradiation and the process of delivering the viral gene to cells received assistance. This work preliminarily reveals the effect of CP-virus interactions on their photoinactivation activity and should be beneficial for further research on the development of highly efficient antiviral PDT agents.

Funder

National Natural Science Foundation of China

CAS-Croucher Funding Scheme for Joint Laboratories

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3