Tough and biodegradable polyurethane-silica hybrids with a rapid sol-gel transition for bone repair

Author:

Park Su Jeong,Im Seung Hyuk,Kim Donghak,Park DoYeun,Jung Youngmee,Han Hyung-seop,Kim Soo Hyun,Chung Justin J.ORCID

Abstract

AbstractInorganic–organic hybrid materials have promising properties for bone repair because of the covalent bonding between their inorganic and organic phases. This desirable interaction allows the limitations of composite materials, such as inhomogeneous biodegradation rates and nonbiointeractive surfaces, to be overcome. In this study, a polycaprolactone (PCL)-based polyurethane (PU) with an organosilane functional group was synthesized for the first time. Thereafter, a biodegradable PU-silica hybrid was produced through the sol-gel process. The PU-silica hybrid was not only flexible and fully biodegradable but also possessed shape memory ability. In addition, allophanate bonding enabled the silane coupling agent to induce increased crosslinking between the polymer and silica network, as well as between polymer and polymer. Accordingly, the sol-to-gel gelation time required to produce the hybrids was very short, which allowed the production of 3D porous hybrid scaffolds through a simple salt-leaching process. A hybrid scaffold with a 30 wt. % silica composition was the most ideal bone regenerative scaffold since it was able to withstand thermal deformation with promising mechanical properties. Moreover, the hybrid scaffold induced osteogenic differentiation and angiogenesis to accelerate bone regeneration.

Funder

National Research Foundation of Korea

Korea Institute of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3