High tolerance of the superconducting current to large grain boundary angles in potassium-doped BaFe2As2

Author:

Hatano TakafumiORCID,Qin Dongyi,Iida KazumasaORCID,Gao Hongye,Guo Zimeng,Saito Hikaru,Hata Satoshi,Shimada YusukeORCID,Naito Michio,Yamamoto AkiyasuORCID

Abstract

AbstractSuperconducting magnets based on high-temperature superconductors (HTSs) have become critical components in cutting-edge technologies such as advanced medical applications. In HTSs, weak links of superconductivity are inevitable at high-angle grain boundaries (GBs). Thus, two adjacent grains should be crystallographically aligned within the critical angle (θc), for which the intergrain critical current density (Jc) starts to decrease exponentially. The θc of several iron-based superconductors (IBSs) is larger than that of cuprates. However, the decreases in both θc and intergrain Jc under magnetic fields for IBSs are still substantial, hampering their applications in polycrystalline forms. Here, we report that potassium-doped BaFe2As2 (Ba122:K) exhibits superior GB performance to that of previously reported IBSs. A transport Jc of over 0.1 MA/cm2 across [001]-tilt GBs with misorientation angles up to θGB = 24° was recorded even at 28 K, which is a required level for practical applications. Additionally, even in an applied magnetic field, θc was unaltered, and the decay of the intergrain Jc was small. Our results highlight the exceptional potential of Ba122:K for polycrystalline applications and pave the way for next-generation superconducting magnets.

Funder

MEXT | JST | Core Research for Evolutional Science and Technology

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3