Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature

Author:

Castro Pedro Baptista deORCID,Terashima KenseiORCID,Yamamoto Takafumi DORCID,Hou ZhufengORCID,Iwasaki Suguru,Matsumoto RyoORCID,Adachi ShintaroORCID,Saito YoshitoORCID,Song PengORCID,Takeya HiroyukiORCID,Takano YoshihikoORCID

Abstract

AbstractMagnetic refrigeration exploits the magnetocaloric effect, which is the entropy change upon the application and removal of magnetic fields in materials, providing an alternate path for refrigeration other than conventional gas cycles. While intensive research has uncovered a vast number of magnetic materials that exhibit a large magnetocaloric effect, these properties remain unknown for a substantial number of compounds. To explore new functional materials in this unknown space, machine learning is used as a guide for selecting materials that could exhibit a large magnetocaloric effect. By this approach, HoB2 is singled out and synthesized, and its magnetocaloric properties are evaluated, leading to the experimental discovery of a gigantic magnetic entropy change of 40.1 J kg−1 K−1 (0.35 J cm−3 K−1) for a field change of 5 T in the vicinity of a ferromagnetic second-order phase transition with a Curie temperature of 15 K. This is the highest value reported so far, to the best of our knowledge, near the hydrogen liquefaction temperature; thus, HoB2 is a highly suitable material for hydrogen liquefaction and low-temperature magnetic cooling applications.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modelling and Simulation,Condensed Matter Physics,General Materials Science,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3