Three-dimensional ordered porous electrode materials for electrochemical energy storage

Author:

Liu Zaichun,Yuan Xinhai,Zhang Shuaishuai,Wang Jing,Huang Qinghong,Yu Nengfei,Zhu Yusong,Fu Lijun,Wang Faxing,Chen Yuhui,Wu YupingORCID

Abstract

AbstractThe past decade has witnessed substantial advances in the synthesis of various electrode materials with three-dimensional (3D) ordered macroporous or mesoporous structures (the so-called “inverse opals”) for applications in electrochemical energy storage devices. This review summarizes recent advancements in 3D ordered porous (3DOP) electrode materials and their unusual electrochemical properties endowed by their intrinsic and geometric structures. The 3DOP electrode materials discussed here mainly include carbon materials, transition metal oxides (such as TiO2, SnO2, Co3O4, NiO, Fe2O3, V2O5, Cu2O, MnO2, and GeO2), transition metal dichalcogenides (such as MoS2 and WS2), elementary substances (such as Si, Ge, and Au), intercalation compounds (such as Li4Ti5O12, LiCoO2, LiMn2O4, LiFePO4), and conductive polymers (polypyrrole and polyaniline). Representative applications of these materials in Li ion batteries, aqueous rechargeable lithium batteries, Li-S batteries, Li-O2 batteries, and supercapacitors are presented. Particular focus is placed on how ordered porous structures influence the electrochemical performance of electrode materials. Additionally, we discuss research opportunities as well as the current challenges to facilitate further contributions to this emerging research frontier.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 267 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3