Abstract
AbstractResidual stress engineering is widely used in the design of new advanced lightweight materials. For metallic glasses, attention has been given to structural changes and rejuvenation processes. High-energy scanning X-ray diffraction strain mapping reveals large elastic fluctuations in notched metallic glasses after deformation under triaxial compression. Microindentation hardness mapping hints at a competing hardening–softening mechanism after compression and reveals the complementary effects of stress and structure modulation. Transmission electron microscopy proves that structure modulation and elastic heterogeneity distribution under room temperature deformation are related to shear band formation. Molecular dynamics simulations provide an atomistic understanding of the confined deformation mechanism in notched metallic glasses and the related fluctuations in the elastic and plastic strains. Thus, future focus should be given to stress modulation and elastic heterogeneity, which, together with structure modulation, may allow the design of metallic glasses with enhanced ductility and strain-hardening ability.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation
Reference50 articles.
1. Isner, B. A. & Lacks, D. J. Generic rugged landscapes under strain and the possibility of rejuvenation in glasses. Phys. Rev. Lett. 96, 025506 (2006).
2. Fan, Y., Iwashita, T. & Egami, T. Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material. Nat. Commun. 8, 15417 (2017).
3. Saida, J., Yamada, R. & Wakeda, M. Recovery of less relaxed state in Zr-Al-Ni-Cu bulk metallic glass annealed above glass transition temperature. Appl. Phys. Lett. 103, 221910 (2013).
4. Küchemann, S. et al. Energy storage in metallic glasses via flash annealing. Adv. Funct. Mater. 28, 1805385 (2018).
5. Wakeda, M., Saida, J., Li, J. & Ogata, S. Controlled rejuvenation of amorphous metals with thermal processing. Sci. Rep. 5, 1–8 (2015).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献