Monolithic polymeric porous superhydrophobic material with pneumatic plastron stabilization for functionally durable drag reduction in blood-contacting biomedical applications

Author:

Marlena Jennifer,Tan Justin Kok Soon,Lin Zenggan,Li David Xinzheyang,Zhao Boxin,Leo Hwa Liang,Kim Sangho,Yap Choon HwaiORCID

Abstract

AbstractSuperhydrophobic (SHP) surfaces can provide substantial reductions in flow drag forces and reduce blood damage in cardiovascular medical devices. However, strategies for functional durability are necessary, as many SHP surfaces have low durability under abrasion or strong fluid jetting or eventually lose their air plastron and slip-flow capabilities due to plastron gas dissolution, high fluid pressure, or fouling. Here, we present a functional material that extends the functional durability of superhydrophobic slip flow. Facile modification of a porous superhydrophobic polytetrafluoroethylene (PTFE, Teflon) foam produced suitable surface structures to enable fluid slip flow and resist protein fouling. Its monolithic nature offered abrasion durability, while its porosity allowed pressurized air to be supplied to resist fluid impalement and to replenish the air plastron lost to the fluid through dissolution. Active pore pressure control could resist high fluid pressures and turbulent flow conditions across a wide range of applied pressures. The pneumatically stabilized material yielded large drag reductions (up to 50%) even with protein fouling, as demonstrated from high-speed water jetting and closed loop pressure drop tests. Coupled with its high hemocompatibility and impaired protein adsorption, this easily fabricated material can be viable for incorporation into blood-contacting medical devices.

Funder

MOH | National Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3