Abstract
AbstractThe development of low-cost, high-activity, and durable integrated bifunctional flexible air electrodes for use in Zn-air batteries is both challenging and important. We report a simple and scalable electropolymerization method used to prepare an electrode material comprising heavily N-doped carbon covering single-walled carbon nanotube (N/C-SWCNT) networks. The resulting core/shell structure of the hybrid electrode enabled the flexibility, mechanics, and three-dimensional interconnected porous structure of SWCNT films while containing abundant pyridinic N, which provided excellent catalytic activity for both the oxygen reduction and evolution reactions (overpotential gap = 0.76 V). A binder-free Zn-air battery using the N/C-SWCNT film as an oxygen electrode was assembled and showed a high peak power density of 181 mW/cm2, a high specific capacity of 810 mAh/g and stable discharge‒charge cycling performance. We also constructed a flexible solid-state Zn-air battery featuring not only a high power density of 22 mW/cm2 but also good flexibility and stability.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献