Abstract
AbstractFor the development of spintronic devices, the control of magnetization by a low electric field is necessary. The microscopic origin of manipulating spins relies on the control of orbital magnetic moments (morb) by strain; this is essential for the high performance magnetoelectric (ME) effect. Herein, electric-field induced X-ray magnetic circular dichroism (XMCD) is used to determine the changes in morb by piezoelectric strain and clarify the relationship between the strain and morb in an interfacial multiferroics system with a significant ME effect; the system consists of the Heusler alloy Co2FeSi on a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 substrate. Element-specific investigations of the orbital states by operando XMCD and the local environment via extended X-ray absorption fine structure (EXAFS) analysis show that the modulation of only the Fe sites in Co2FeSi primarily contributes to the giant ME effect. The density functional theory calculations corroborate this finding, and the growth of the high index (422) plane in Co2FeSi results in a giant ME effect. These findings elucidate the element-specific orbital control using reversible strain, called the ‘orbital elastic effect,’ and can provide guidelines for material designs with a giant ME effect.
Funder
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献