Abstract
AbstractThe addition of artificial pinning centers has led to an impressive increase in the critical current density (Jc) of superconductors, enabling record-breaking all-superconducting magnets and other applications. The Jc of superconductors has reached ~0.2–0.3 Jd, where Jd is the depairing current density, and the numerical factor depends on the pinning optimization. By modifying λ and/or ξ, the penetration depth and coherence length, respectively, we can increase Jd. For (Y0.77Gd0.23)Ba2Cu3Oy ((Y,Gd)123), we can achieve this by controlling the carrier density, which is related to λ and ξ. We can also tune λ and ξ by controlling the chemical pressure in Fe-based superconductors, i.e., BaFe2(As1−xPx)2 films. The variation in λ and ξ leads to an intrinsic improvement in Jc via Jd, allowing extremely high values of Jc of 130 MA/cm2 and 8.0 MA/cm2 at 4.2 K, consistent with an enhancement in Jd of a factor of 2 for both incoherent nanoparticle-doped (Y,Gd)123 coated conductors (CCs) and BaFe2(As1−xPx)2 films, showing that this new material design is useful for achieving high critical current densities in a wide array of superconductors. The remarkably high vortex-pinning force in combination with this thermodynamic and pinning optimization route for the (Y,Gd)123 CCs reached ~3.17 TN/m3 at 4.2 K and 18 T (H||c), the highest values ever reported for any superconductor.
Funder
MEXT | Japan Society for the Promotion of Science
MEXT | Japan Science and Technology Agency
New Energy and Industrial Technology Development Organization
DOE | SC | Basic Energy Sciences
DOE | LDRD | Los Alamos National Laboratory
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献