Abstract
AbstractDue to their inherent hydrophobic and bioinert nature, synthetic degradable polymer-based membranes show inferior stem cell attachment, proliferation, and even differentiation. To overcome these limitations, bioinspired and osteopromotive polydopamine nanoparticle-incorporated fibrous membranes are developed via a two-step route: pH-induced polymerization of dopamine and co-electrospinning of polycaprolactone (PCL) with polydopamine nanoparticles (PDA NPs). Hybrid membranes with optimized PDA NP content exhibit high quantities of apatite deposition and prominent cytocompatibility (cell attachment, spreading and reproduction) and osteo-differentiation potential (alkaline phosphatase activity, calcium mineralization, and osteogenesis-related genes and protein expression) of human mesenchymal stem cells cultured without any growth factors. Importantly, in vivo assessments using a mouse calvarial critical-sized defect demonstrate that the engineered fibrous membranes remarkably boost bone reconstruction and regeneration. Accordingly, our bioinspired PCL-based hybrid fibrous membranes with robust osteoinductive ability can potentially be utilized as a clinically applicable candidate in guided tissue regeneration applications.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modelling and Simulation,Condensed Matter Physics,General Materials Science,Modelling and Simulation
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献