Preparation 8.5%-efficient submodule using 5%-efficient DSSCs via three-dimensional angle array and light-trapping layer

Author:

Sim Yeon Hyang,Yun Min Ju,Cha Seung I.,Lee Dong Yoon

Abstract

AbstractExpanding the application area of photovoltaics to urban environments demands high efficiency under low-intensity lighting conditions, as well as omnidirectional light trapping. Dye-sensitized solar cells are of particular interest in this regard, owing to their superior electricity production in dim light; however, an improvement in dye-sensitized solar cells efficiency is required for successful implementation. We developed a light-trapping layer within the photoanode of dye-sensitized solar cells and configured these cells into an angled three-dimensional (3D) array creating a submodule to improve efficiency. The light-trapping layer increases the travel distance of the light within the photoanode, thus improving electron generation by the photons of the omnidirectional incident light. The 3D angled array suppresses recombination and internal resistance losses, improving the collection efficiency by increasing the relative cell surface area with respect to the light projection area. Using the proposed configuration, we achieved a dye-sensitized solar cells submodule efficiency of 8.5% using 5%-efficient dye-sensitized solar cells with a pot-shaped light-trapping layer and a 60° angled 3D array for the submodule. Considering that there is room for further improvement, our proposed photovoltaics configuration is expected to overcome the current limitations of dye-sensitized solar cells, thus providing promising photovoltaics modules for urban environments.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modelling and Simulation,Condensed Matter Physics,General Materials Science,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3