Unveiling a new type of ultradense anomalous metallic glass with improved strength and ductility through a high-pressure heat treatment

Author:

Yamada Rui,Shibazaki YukiORCID,Abe Yasuto,Ryu Wookha,Saida JunjiORCID

Abstract

AbstractAn anomalous glass was discovered through high-pressure heat treatment (5.5 GPa at 850 K) followed by rapid cooling of a Zr50Cu40Al10 metallic glass. Despite a reduction in the crystallization temperature and enthalpy, high-resolution transmission electron microscopy analysis revealed that the collected bulk sample maintained a fully amorphous structure. The density of the sample was 0.6% larger than that of the as-cast state and was even larger than that of the partially crystallized state. These results suggest the formation of an ultradense packing glass that cannot be obtained through conventional annealing. Compression test results indicated a significant increase in the Young’s modulus and fracture strength, supporting the creation of an anomalous metallic glass. In addition, plasticity was observed in the treated sample. It was therefore concluded that the high-pressure heat treatment enabled the creation of a new type of glass that is normally overshadowed by the crystallized phase at atmospheric pressure. We explained the creation of the ultradense glass by introducing a pressure parameter (P) to the conventional volume (v) - temperature (T) diagram.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3