Stability and lifetime of diffusion-trapped oxygen in oxide-derived copper CO2 reduction electrocatalysts

Author:

Lian ZanORCID,Dattila FedericoORCID,López NúriaORCID

Abstract

AbstractOxide-derived Cu has an excellent ability to promote C–C coupling in the electrochemical carbon dioxide reduction reaction. However, these materials largely rearrange under reaction conditions; therefore, the nature of the active site remains controversial. Here we study the reduction process of oxide-derived Cu via large-scale molecular dynamics with a precise neural network potential trained on first-principles data and introducing experimental conditions. The oxygen concentration in the most stable oxide-derived Cu increases with an increase of the pH, potential or specific surface area. In long electrochemical experiments, the catalyst would be fully reduced to Cu, but removing all the trapped oxygen takes a considerable amount of time. Although the highly reconstructed Cu surface provides various sites to adsorb oxygen more strongly, the surface oxygen atoms are not stable under common experimental conditions. This work provides insight into the evolution of oxide-derived Cu catalysts and residual oxygen during reaction and also a deep understanding of the nature of active sites.

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3