Abstract
AbstractWhole chromosome losses resulting in near-haploid karyotypes are found in a rare subgroup of treatment-refractory acute lymphoblastic leukemia. To systematically dissect the unique physiology and uncover susceptibilities that can be exploited in near-haploid leukemia, we leveraged single-cell RNA-Seq and computational inference of cell cycle stages to pinpoint key differences between near-haploid and diploid leukemia cells. Combining cell cycle stage-specific differential expression with gene essentiality scores from a genome-wide CRISPR-Cas9-mediated knockout screen, we identified the homologous recombination pathway component RAD51B as an essential gene in near-haploid leukemia. DNA damage analyses revealed significantly increased sensitivity of RAD51-mediated repair to RAD51B loss in the G2/M stage of near-haploid cells, suggesting a unique role of RAD51B in the homologous recombination pathway. Elevated G2/M and G1/S checkpoint signaling was part of a RAD51B signature expression program in response to chemotherapy in a xenograft model of human near-haploid B-ALL, and RAD51B and its associated programs were overexpressed in a large panel of near-haploid B-ALL patients. These data highlight a unique genetic dependency on DNA repair machinery in near-haploid leukemia and demarcate RAD51B as a promising candidate for targeted therapy in this treatment-resistant disease.
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Ries LAG, Smith MA, Gurney JG, Linet M, Tamra T, Young JL, et al. Cancer incidence and survival among children and adolescents: United States SEER Program 1975–1995. NIH Pub No 99-4649. 1999; 179 pp.
2. Nachman JB, Heerema NA, Sather H, Camitta B, Forestier E, Harrison CJ, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 2007;110:1112–5.
3. Lemez P, Attarbaschi A, Béné MC, Bertrand Y, Castoldi G, Forestier E, et al. Childhood near-tetraploid acute lymphoblastic leukemia: an EGIL study on 36 cases. Eur J Haematol. 2010;85:300–8.
4. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45:242–52.
5. Kotecki M, Reddy PS, Cochran BH. Isolation and characterization of a near-haploid human cell line. Exp Cell Res. 1999;252:273–80.