1. 1. Ashcroft, F. M. & Ashcroft, S.}. H. Properties and functions of ATP-sensitive K-channels. Cell. Signal 2, 197-214 (1990). 2. Ashcroft, F. M. & Rorsman, P. Electrophysiology of the pancreatic |3-cell. Prog. Biophys. Mol. Biol. 54, 87-143 (1989). 3. Ashcroft, F. M. & Ashcroft, S. J. H. The sulphonylurea receptor. Biochim. Biophys. Acta 1175,45-59 (1992). 4. Dunne, M. J., Harding, E., Jaggar, J. H., Ayton, B. J. & Squires, P. E. in Frontiers of Insulin Secretion and Pancreatic j3-Cell Research, (eds Flatt, P. & Lenzen, S.) 153-59 (Smith Gordon, UK, 1993). 5. Inagaki, N. etal. Reconstitution of IKATP: an inward rectifier subunit plus the sulphonylurea receptor. Science 270, 1166-1169 (1995). 6. Sakura, H., Ammala', C., Smith, P. A., Gribble, F. M. & Ashcroft, F. M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel expressed in pancreatic 0-cells, brain, heart and skeletal muscle. FEBS Lett. 377, 338-344 (1995). 7. Anguilar-Bryan, L. et al. Cloning of the /3-cell high-affinity sulphonylurea receptor: a regulator of insulin secretion. Science 268, 423-425 (1995). 8. Inagaki, N. et al. A family of sulfonylurea receptors determines the properties of ATP-sensitive K+ channels. Neuron 16, 1011-1017 (1996). 9. Ammala, C., Moorhouse, A. & Ashcroft, F. M. The sulphonylurea receptor confers diazoxide sensitivity on the inwardly-rectifying K-channel, Kir6.1. /. Physiol (Lond.) 494, 709-714 (1996). 10. Nichols, C. G. et al. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272, 1785-1787(1996). 11. Gribble, F. M., Tucker, S. J. & Ashcroft, F. M. The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by MgADP and diazoxide. EMBO J. 16, 1145-1152 (1997). 12. Proks, P. & Ashcroft, F. M. Modification of K-ATP channels in pancreatic 0-cells by trypsin. Pfliigers Arch. 424, 63-72(1993). 13. Gribble, F. M., Ashfield, R., Ammala, C. & Ashcroft, F. M. Properties of cloned ATP-sensitive K-currents expressed in Xenopus oocytes. /. Physiol. (Lond.) 498, 87-98 (1997). 14. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533-538 (1990). 15. Krapivinsky, G. etal. The G-protein-gated atrial K+ channel IKACH is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374, 135-141 (1995). 16. Sanguinetti, M. C. et al. Coassembly of KVLQT1 and MinK (IsK) proteins to form cardiac /KS potassium channel. Nature 384, 80-83 (1996). 17. Yamada, Y. M. et al. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP insensitive K+ channel./. Physiol. (Land.) 499, 715-720 (1997). 18. McNicholas, C. M., Yang, Y, Gebeisch, G. & Hebert, S. C. Molecular site for nucleotide binding on an ATP-sensitive renal K+ channel (ROMK2). Am. J. Physiol. 271, F275-F285 (1996). 19. Collins, A., German, M. S., Jan, Y. N., Jan, L. Y. & Zhao, B. A strongly inwardly rectifying K+ channel that is sensitive to ATP. /. Neurosci. 16, 1-9 (1996). 20. Higgins, C. F. ABC transporters: from microorganisms to man.Annu. Rev. CellBiol. 8,67-113 (1992). 21. Karschin, C., Ecke, C., Ahscroft, F. M. & Karschin, A. Overlapping tissue distribution of KATP channel-forming Kir6.2 subunit and the sulphonylurea receptor SUR1 in rodent brain. FEES Lett. 401,59-64 (1996). 22. Hilgemann, D. W., Nicoll, D. A. & Phillipson, K. D. Charge movement during Na+ translocation by native and cloned Na+/Ca2+ exchanger. Nature 352, 715-718 (1991).