Yeast9: a consensus genome-scale metabolic model for S. cerevisiae curated by the community

Author:

Zhang ChengyuORCID,Sánchez Benjamín JORCID,Li FeiranORCID,Eiden Cheng Wei Quan,Scott William TORCID,Liebal Ulf W,Blank Lars MORCID,Mengers Hendrik G,Anton MihailORCID,Rangel Albert TafurORCID,Mendoza Sebastián NORCID,Zhang Lixin,Nielsen Jens,Lu HongzhongORCID,Kerkhoven Eduard JORCID

Abstract

AbstractGenome-scale metabolic models (GEMs) can facilitate metabolism-focused multi-omics integrative analysis. Since Yeast8, the yeast-GEM of Saccharomyces cerevisiae, published in 2019, has been continuously updated by the community. This has increased the quality and scope of the model, culminating now in Yeast9. To evaluate its predictive performance, we generated 163 condition-specific GEMs constrained by single-cell transcriptomics from osmotic pressure or reference conditions. Comparative flux analysis showed that yeast adapting to high osmotic pressure benefits from upregulating fluxes through central carbon metabolism. Furthermore, combining Yeast9 with proteomics revealed metabolic rewiring underlying its preference for nitrogen sources. Lastly, we created strain-specific GEMs (ssGEMs) constrained by transcriptomics for 1229 mutant strains. Well able to predict the strains’ growth rates, fluxomics from those large-scale ssGEMs outperformed transcriptomics in predicting functional categories for all studied genes in machine learning models. Based on those findings we anticipate that Yeast9 will continue to empower systems biology studies of yeast metabolism.

Funder

MOST | National Key Research and Development Program of China

MOST | National Natural Science Foundation of China

Novo Nordisk Fonden

Knut och Alice Wallenbergs Stiftelse

EC | Horizon 2020 Framework Programme

111 Plan | Overseas Expertise Introduction Project for Discipline Innovation

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

CN Yang Scholars program

Deutsche Forschungsgemeinschaft

UC | FCFM | Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas

Agencia Nacional de Investigación y Desarrollo

Consejo Nacional de Innovación, Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3