Abstract
AbstractOptimizing viral vectors and their properties will be important for improving the effectiveness and safety of clinical gene therapy. However, such research may generate dual-use insights relevant to the enhancement of pandemic pathogens. In particular, reliable and generalizable methods of immune evasion could increase viral fitness sufficient to cause a new pandemic. High potential for misuse is associated with (1) the development of universal genetic elements for immune modulation, (2) specific insights on capsid engineering for antibody evasion applicable to viruses with pandemic potential, and (3) the development of computational methods to inform capsid engineering. These risks may be mitigated by prioritizing non-viral delivery systems, pharmacological immune modulation methods, non-genetic vector surface modifications, and engineering methods specific to AAV and other viruses incapable of unassisted human-to-human transmission. We recommend that computational vector engineering and the publication of associated code and data be limited to AAV until a technical solution for preventing malicious access to viral engineering tools has been established.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Molecular Biology,Molecular Medicine
Reference38 articles.
1. Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES, et al. Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Front Genet [Internet]. 2019 [cited 2021 Jun 1];10. Available from: https://www.frontiersin.org/articles/10.3389/fgene.2019.00868/full.
2. Schoch-Spana M, Cicero A, Adalja A, Gronvall G, Kirk Sell T, Meyer D, et al. Global catastrophic biological risks: toward a working definition. Health Secur. 2017;15:323–8.
3. Gilsdorf JR, Zilinskas RA. New considerations in infectious disease outbreaks: the threat of genetically modified microbes. Clin Infect Dis. 2005;40:1160–5.
4. Kirkpatrick J, Koblentz GD, Palmer MJ, Perello E, Relman DA, Denton SW Editing Biosecurity: Needs and Strategies for Governing Genome Editing [Internet]. 2018 Dec [cited 2021 Jul 27]. 53–4, 56, 65–6. Available from: http://mars.gmu.edu/bitstream/handle/1920/11342/Editing-Bio-%2bReport-Final.pdf?sequence=1&isAllowed=y.
5. Javitt G, Prince A Gene Therapy. In: Innovation, Dual Use, and Security: Managing the risks of emerging biological and chemical technologies. Cambridge, MA: MIT Press; 2012. p. 249–59.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献