Abstract
AbstractWearable electronic devices are playing a rapidly expanding role in the acquisition of individuals’ health data for personalized medical interventions; however, wearables cannot yet directly program gene-based therapies because of the lack of a direct electrogenetic interface. Here we provide the missing link by developing an electrogenetic interface that we call direct current (DC)-actuated regulation technology (DART), which enables electrode-mediated, time- and voltage-dependent transgene expression in human cells using DC from batteries. DART utilizes a DC supply to generate non-toxic levels of reactive oxygen species that act via a biosensor to reversibly fine-tune synthetic promoters. In a proof-of-concept study in a type 1 diabetic male mouse model, a once-daily transdermal stimulation of subcutaneously implanted microencapsulated engineered human cells by energized acupuncture needles (4.5 V DC for 10 s) stimulated insulin release and restored normoglycemia. We believe this technology will enable wearable electronic devices to directly program metabolic interventions.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Physiology (medical),Endocrinology, Diabetes and Metabolism,Internal Medicine
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献