Nonlocal dielectric function and nested dark excitons in MoS2

Author:

Koitzsch AndreasORCID,Pawlik Anna-Sophie,Habenicht Carsten,Klaproth Tom,Schuster Roman,Büchner Bernd,Knupfer Martin

Abstract

Abstract Their exceptional optical properties are a driving force for the persistent interest in atomically thin transition metal dichalcogenides such as MoS2. The optical response is dominated by excitons. Apart from the bright excitons, which directly couple to light, it has been realized that dark excitons, where photon absorption or emission is inhibited by the spin state or momentum mismatch, are decisive for many optical properties. However, in particular the momentum dependence is difficult to assess experimentally and often remains elusive or is investigated by indirect means. Here we study the momentum dependent electronic structure experimentally and theoretically. We use angle-resolved photoemission as a one-particle probe of the occupied valence band structure and electron energy loss spectroscopy as a two-particle probe of electronic transitions across the gap to benchmark a single-particle model of the dielectric function $$\epsilon ({\bf{q}},\omega )$$ ϵ ( q , ω ) against momentum dependent experimental measurements. This ansatz captures key aspects of the data surprisingly well. In particular, the energy region where substantial nesting occurs, which is at the origin of the strong light–matter interaction of thin transition metal dichalcogenides and crucial for the prominent C-exciton, is described well and spans a more complex exciton landscape than previously anticipated. Its local maxima in $$({\bf{q}}\ \ne \ 0,\omega )$$ ( q 0 , ω ) space can be considered as dark excitons and might be relevant for higher order optical processes. Our study may lead to a more complete understanding of the optical properties of atomically thin transition metal dichalcogenides.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3