Abstract
AbstractThe presence of periodic modulation in graphene leads to a reconstruction of the band structure and formation of minibands. In an external uniform magnetic field, a fractal energy spectrum called Hofstadter butterfly is formed. Particularly interesting in this regard are superlattices with tunable modulation strength, such as electrostatically induced ones in graphene. We perform quantum transport modeling in gate-induced square two-dimensional superlattice in graphene and investigate the relation to the details of the band structure. At low magnetic field the dynamics of carriers reflects the semi-classical orbits which depend on the mini band structure. We theoretically model transverse magnetic focusing, a ballistic transport technique by means of which we investigate the minibands, their extent and carrier type. We find a good agreement between the focusing spectra and the mini band structures obtained from the continuum model, proving usefulness of this technique. At high magnetic field the calculated four-probe resistance fit the Hofstadter butterfly spectrum obtained for our superlattice. Our quantum transport modeling provides an insight into the mini band structures, and can be applied to other superlattice geometries.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献