Abstract
AbstractChemical vapor deposition (CVD) allows lateral edge epitaxy of transition metal dichalcogenide heterostructures. Critical for carrier and exciton transport is the material quality and the nature of the lateral heterojunction. Important details of the optical properties were inaccessible in as-grown heterostructure samples due to large inhomogeneous broadening of the optical transitions. Here we perform optical spectroscopy of CVD grown MoSe2-WSe2 lateral heterostructures, encapsulated in hBN. Photoluminescence (PL), reflectance contrast and Raman spectroscopy reveal optical transition linewidths similar to high quality exfoliated monolayers, while PL imaging experiments uncover the effective excitonic diffusion length of both materials. The typical extent of the covalently bonded MoSe2-WSe2 heterojunctions is 3 nm measured by scanning transmission electron microscopy (STEM). Tip-enhanced, sub-wavelength optical spectroscopy mapping shows the high quality of the heterojunction which acts as an excitonic diode resulting in unidirectional exciton transfer from WSe2 to MoSe2.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献