Inkjet-printed CMOS-integrated graphene–metal oxide sensors for breath analysis

Author:

Wu Tien-ChunORCID,De Luca Andrea,Zhong Qinyu,Zhu Xiaoxi,Ogbeide Osarenkhoe,Um Doo-Seung,Hu GuohuaORCID,Albrow-Owen Tom,Udrea Florin,Hasan Tawfique

Abstract

Abstract Early diagnosis in exhaled breath is a key technology for next-generation personal healthcare monitoring. Current chemiresistive sensors, primarily based on metal oxide (MOx) thin films, have limited applicability in such portable systems due to their high power consumption, long recovery time, poor device-to-device consistency, and baseline drifts. To address these challenges for ammonia ($${{\rm{NH}}}_{3}$$ NH 3 ) detection in exhaled breath, a critical biomarker for a variety of kidney and liver problems, we present a formulation of a graphene–MOx functional ink-based sensing platform. We integrate our sensing layer directly onto miniaturized CMOS microhotplates (μHP) via inkjet printing, potentially enabling scalability and device-to-device performance repeatability. Using stage-by-stage temporal analysis, and a temperature-pulsed modulation (TM) strategy, we achieve ultrahigh responsivity (1500% at 10 ppm pure $${{\rm{NH}}}_{3}$$ NH 3 ), fast response and recovery time (28 and 43 s), ultralow power consumption (~6 mW), negligible baseline drift (<0.67%), excellent cross-device and cross-cycle consistency (<0.5% and <0.41% variation in responsivity) and long-term stability (<1% variation) in our graphene–zinc oxide (ZnO) formulation, outperforming conventional MOx chemiresistive sensors. We further mitigate the effect of humidity through our measurement protocols, while interference from acetone is compensated through the parallel deployment of an additional inkjet printed graphene–tungsten oxide ($${{\rm{WO}}}_{3}$$ WO 3 ) device as part of the sensor array. Our dual graphene–MOx formulations and their integration with ultralow power CMOS through inkjet printing represent a significant step towards reliable and portable multi-analyte breath diagnostics.

Funder

RCUK | Engineering and Physical Sciences Research Council

Innovate UK

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3