Abstract
AbstractElectrooculography (EOG) is a method to record the electrical potential between the cornea and the retina of human eyes. Despite many applications of EOG in both research and medical diagnosis for many decades, state-of-the-art EOG sensors are still bulky, stiff, and uncomfortable to wear. Since EOG has to be measured around the eye, a prominent area for appearance with delicate skin, mechanically and optically imperceptible EOG sensors are highly desirable. Here, we report an imperceptible EOG sensor system based on noninvasive graphene electronic tattoos (GET), which are ultrathin, ultrasoft, transparent, and breathable. The GET EOG sensors can be easily laminated around the eyes without using any adhesives and they impose no constraint on blinking or facial expressions. High-precision EOG with an angular resolution of 4° of eye movement can be recorded by the GET EOG and eye movement can be accurately interpreted. Imperceptible GET EOG sensors have been successfully applied for human–robot interface (HRI). To demonstrate the functionality of GET EOG sensors for HRI, we connected GET EOG sensors to a wireless transmitter attached to the collar such that we can use eyeball movements to wirelessly control a quadcopter in real time.
Funder
DOD | Office of Naval Research
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Reference63 articles.
1. Bareket, L. et al. Temporary-tattoo for long-term high fidelity biopotential recordings. Sci. Rep. 6, 25727 (2016).
2. Huang, X., Yeo, W. H., Liu, Y. & Rogers, J. A. Epidermal differential impedance sensor for conformal skin hydration monitoring. Biointerphases 7, 52 (2012).
3. Kenry, Yeo, J. C. & Lim, C. T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2, 16043 (2016).
4. Jeong, J. W. et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).
5. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献