Author:
Marian Damiano,Soriano David,Cannavó Emmanuele,Marin Enrique G.,Fiori Gianluca
Abstract
AbstractThe recent discovery of two-dimensional (2D) magnetic materials has opened new frontiers for the design of nanoscale spintronic devices. Among 2D nano-magnets, bilayer CrI3 outstands for its antiferromagnetic interlayer coupling and its electrically-mediated magnetic state control. Here, leveraging on CrI3 magnetic and electrical properties, we propose a lateral spin-valve transistor based on bilayer CrI3, where the spin transport is fully controlled via an external electric field. The proposed proof-of-concept device, working in the ballistic regime, is able to both filter (>99%) and select ON/OFF the spin current up to a ratio of ≈102, using a double split-gate architecture. Our results obtained exploiting a multiscale approach ranging from first-principles to out-of-equilibrium transport calculations, open unexplored paths towards the exploitation of bilayer CrI3 or related 2D nano-magnets, as a promising platform for future electrically tunable, compact, and scalable spintronic devices.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献