MXene functionalized collagen biomaterials for cardiac tissue engineering driving iPSC-derived cardiomyocyte maturation

Author:

Asaro Giuseppe A.,Solazzo MatteoORCID,Suku Meenakshi,Spurling Dahnan,Genoud Katelyn,Gonzalez Javier GutierrezORCID,Brien Fergal J. O’ORCID,Nicolosi ValeriaORCID,Monaghan Michael G.ORCID

Abstract

AbstractElectroconductive biomaterials are gaining significant consideration for regeneration in tissues where electrical functionality is of crucial importance, such as myocardium, neural, musculoskeletal, and bone tissue. In this work, conductive biohybrid platforms were engineered by blending collagen type I and 2D MXene (Ti3C2Tx) and afterwards covalently crosslinking; to harness the biofunctionality of the protein component and the increased stiffness and enhanced electrical conductivity (matching and even surpassing native tissues) that two-dimensional titanium carbide provides. These MXene platforms were highly biocompatible and resulted in increased proliferation and cell spreading when seeded with fibroblasts. Conversely, they limited bacterial attachment (Staphylococcus aureus) and proliferation. When neonatal rat cardiomyocytes (nrCMs) were cultured on the substrates increased spreading and viability up to day 7 were studied when compared to control collagen substrates. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were seeded and stimulated using electric-field generation in a custom-made bioreactor. The combination of an electroconductive substrate with an external electrical field enhanced cell growth, and significantly increased cx43 expression. This in vitro study convincingly demonstrates the potential of this engineered conductive biohybrid platform for cardiac tissue regeneration.

Funder

Science Foundation Ireland

Wellcome Trust

Irish Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3