Abstract
AbstractSolution-based processable high-k 2-dimensional (2D) ferroelectrics have attracted significant interest for use in next-generation nanoelectronics. Although few studies on potential 2D ferroelectric nanosheets in local areas have been conducted, reports on the thin-film characteristics applicable to the device are insufficient. In this study, we successfully synthesize high-k 2D Sr1.8Bi0.2Nan-3NbnO3n+1 (octahedral units, n = 3–5) nanosheets by the engineering of the n of NbO6 octahedral layers with A-site modification, and realized ferroelectric characteristics in ultrathin films (below 10 nm). The nanosheets are synthesized by a solution-based cation exchange process and deposited using the Langmuir-Blodgett (LB) method. As increasing the NbO6 octahedral layer, the thickness of the nanosheets increased and the band gaps are tuned to 3.80 eV (n = 3), 3.76 eV (n = 4), and 3.70 eV (n = 5). In addition, the dielectric permittivity of the 5-layer stacked nanofilm increase to 26 (n = 3), 33 (n = 4), and 62 (n = 5). In particular, the increased perovskite layer exhibits large distortions due to the size mismatch of Sr/Bi/Na ions at the A-site and promotes local ferroelectric instability due to its spontaneous polarization along the c-axis caused by an odd n number. We investigate the stable ferroelectricity in Pt/ 5-layer Sr1.8Bi0.2Na2Nb5O16 / Nb:STO capacitor by polarization-electric field (P-E) hysteresis; the coercive electric field (Ec) was 338 kV cm−1 and the remnant polarization (Pr) 2.36 μC cm−2. The ferroelectric properties of ultrathin 2D materials could drive interesting innovations in next-generation electronics.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Reference43 articles.
1. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).
2. Zhang, J. L. et al. 2D Phosphorene: epitaxial growth and interface engineering for electronic devices. Adv. Mater. 30, 1802207 (2018).
3. Kang, J., Sangwan, V. K., Wood, J. D. & Hersam, M. C. Solution-based processing of monodisperse two-dimensional nanomaterials. Acc. Chem. Res 50, 943–951 (2017).
4. Smith, R. J. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).
5. Kang, J. et al. Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation. Nat. Commun. 5, 5478 (2014).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献