Mixed-dimensional nanocomposites based on 2D materials for hydrogen storage and CO2 capture

Author:

Park Yong-JuORCID,Lee Hongju,Choi Hye LeenORCID,Tapia Ma CharleneORCID,Chuah Chong YangORCID,Bae Tae-HyunORCID

Abstract

AbstractPorous materials possessing high surface areas are of paramount importance in gas separation and storage, as they can potentially adsorb a large amount of gas per unit of mass or volume. Pore structure and functionality are also important factors affecting adsorbate–absorbent interactions. Hence, efforts have been devoted to developing adsorbents with large accessible surface areas and tunable functionalities to realize improvements in gas adsorption capacity. However, the gas adsorption and storage capacities of porous materials composed of a single type of building unit are often limited. To this end, mixed-dimensional hybrid materials have been developed, as they can contain more gas storage sites within their structures than simple porous materials. In this review, we discuss (1) the methods that have been used to assemble various dimensional building blocks into a range of mixed-dimensional (zero-dimensional–two-dimensional, one-dimensional–two-dimensional, and three-dimensional–two-dimensional) hybrid materials exhibiting synergistic adsorption effects, and (2) these materials’ hydrogen and carbon dioxide adsorption properties and how they are correlated with their accessible surface areas. We conclude by outlining the challenges remaining to be surmounted to realize practical applications of mixed-dimensional hybrid materials and by providing future perspectives.

Funder

National Research Foundation of Korea

Murata Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3