Abstract
AbstractTwo-dimensional (2D) tin(II) monosulfide (SnS) with strong structural anisotropy has been proven to be a phosphorene analog. However, difficulty in isolating a very thin layer of SnS poses challenges in practical utilization. Here, we prepare ultrathin SnS via liquid-phase exfoliation. With transmission electron microscopy, we identify the buckled structure of 2D SnS. We employ temperature dependent Raman spectroscopy to elucidate electron–phonon interactions, which reveals a linear phonon shifts. The active Raman modes of ultrathin SnS exhibit higher sensitivity to temperature than other 2D materials. Moreover, we demonstrate strong light-matter interaction in ultrathin SnS using Z-scan and ultrafast spectroscopy. Rich exciton–exciton and coherent exciton–photon interactions arising from many-particle excited effects in ultrathin SnS eventually enhances the nonlinear optical properties. Our findings highlight the prospects for the synthesis of ultrathin anisotropic SnS towards the betterment of thermoelectric and photonic devices.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献