Abstract
AbstractQuantum spin Hall insulators (QSHI) have been proposed to power several applications, many of which rely on the possibility to switch on and off the non-trivial topology. Typically this control is achieved through strain or electric fields, which require energy consumption to be maintained. On the contrary, a non-volatile mechanism would be highly beneficial and could be realized through ferroelectricity if opposite polarization states are associated with different topological phases. While this is not possible in a single ferroelectric material where the two polarization states are related by inversion, the necessary asymmetry could be introduced by combining a ferroelectric layer with another two-dimensional (2D) trivial insulator. Here, by means of first-principles simulations, not only we propose that this is a promising strategy to engineer non-volatile ferroelectric control of topological order in 2D heterostructures, but also that the effect is robust and can survive up to room temperature, irrespective of the weak van der Waals coupling between the layers. We illustrate the general idea by considering a heterostructure made of a well-known ferroelectric material, In2Se3, and a suitably chosen, easily exfoliable trivial insulator, CuI. In one polarization state the system is trivial, while it becomes a QSHI with a sizable band gap upon polarization reversal. Remarkably, the topological band gap is mediated by the interlayer hybridization and allows to maximize the effect of intralayer spin-orbit coupling, promoting a robust ferroelectric topological phase that could not exist in monolayer materials and is resilient against relative orientation and lattice matching between the layers.
Funder
Ministero dell'Istruzione, dell'Università e della Ricerca
Swiss National Science Foundation | National Center of Competence in Research Materials' Revolution: Computational Design and Discovery of Novel Materials
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献