Abstract
AbstractHigh-resolution transmission electron microscopy and atom probe tomography are used to characterize the initial passivation and subsequent intergranular corrosion of degraded grain boundaries in a model Ni-30Cr alloy exposed to 360 °C hydrogenated water. Upon initial exposure for 1000 h, the alloy surface directly above the grain boundary forms a thin passivating film of Cr2O3, protecting the underlying grain boundary from intergranular corrosion. However, the metal grain boundary experiences severe Cr depletion and grain boundary migration during this initial exposure. To understand how Cr depletion affects further corrosion, the local protective film was sputtered away using a glancing angle focused ion beam. Upon further exposure, the surface fails to repassivate, and intergranular corrosion is observed through the Cr-depleted region. Through this combination of high-resolution microscopy and localized passive film removal, we show that, although high-Cr alloys are resistant to intergranular attack and stress corrosion cracking, degradation-induced changes in the underlying metal at grain boundaries make the material more susceptible once the initial passive film is breached.
Funder
DOE | SC | Basic Energy Sciences
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献