Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels

Author:

Mamun OsmanORCID,Wenzlick Madison,Sathanur Arun,Hawk Jeffrey,Devanathan RamORCID

Abstract

AbstractThe Larson–Miller parameter (LMP) offers an efficient and fast scheme to estimate the creep rupture life of alloy materials for high-temperature applications; however, poor generalizability and dependence on the constant C often result in sub-optimal performance. In this work, we show that the direct rupture life parameterization without intermediate LMP parameterization, using a gradient boosting algorithm, can be used to train ML models for very accurate prediction of rupture life in a variety of alloys (Pearson correlation coefficient >0.9 for 9–12% Cr and >0.8 for austenitic stainless steels). In addition, the Shapley value was used to quantify feature importance, making the model interpretable by identifying the effect of various features on the model performance. Finally, a variational autoencoder-based generative model was built by conditioning on the experimental dataset to sample hypothetical synthetic candidate alloys from the learnt joint distribution not existing in both 9–12% Cr ferritic–martensitic alloys and austenitic stainless steel datasets.

Funder

DOE | Office of Fossil Energy

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3