Abstract
AbstractCompositionally complex alloys (CCAs), also termed as high entropy alloys (HEAs) or multi-principal element alloys (MPEAs), are being considered as a potential solution for many energy-related applications comprising extreme environments and temperatures. Herein, a review of the pertinent literature is performed in conjunction with original works characterising the oxidation behaviour of two diverse Al-containing alloys; namely a lightweight (5.06 g/cm3) single-phase AlTiVCr CCA and a multiple-phase Al0.9FeCrCoNi CCA (6.9 g/cm3). The thermogravimetric results obtained during oxidation of the alloys at 700 and 900 °C revealed that both alloys tended to obey the desired parabolic rate law. Post-exposure analysis by means of electron microscopy indicated that while the oxide scale formed on the AlTiVCr is adherent to the substrate, the scale developed on the Al0.9FeCrCoNi displays a notable spalling propensity. This study highlights the need for tailoring the protective properties of the oxide scale formed on the surface of the CCAs.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献