Biosoluble ceramic fiber reinforced poly(L-lactic acid) bone scaffold: degradation and bioactivity

Author:

Shuai Cijun,Wang Zhicheng,Zhang Haiyang,Jia Jiye,Huang Liping,Wang Dong,Chen Shijie,Feng PeiORCID

Abstract

Abstract Poly (l-lactic acid) (PLLA) exhibits great potential as a kind of scaffold material for bone defect repair because of its good biocompatibility and processability, while the too slow degradation rate hinders its further application. In this study, the biosoluble ceramic fiber (BCF) was introduced into PLLA matrix, and the PLLA/BCF composite scaffold was manufactured by selective laser sintering (SLS). It was observed that water contact angle of the composite scaffold decreased from 87.4° to 61.1° with the increasing content of BCF, while the pH value raised from 6.6 to 7.8, and the molecular weight of PLLA decreased after immersion for 4 weeks. The mechanism of degradation acceleration was that the dissolution of BCF not only released OH into solution environment and produced alkaline microenvironment, but also formed capillary channels on the interface between BCF and PLLA matrix, beneficial for the infiltration of water into the hydrophobic PLLA matrix, which contributed to the degradation both on the surface and in the interior of the matrix. Besides, the dissolution of BCF released Ca2+, Si2+ and Mg2+ simultaneously and absorbed PO43− from the environment, contributing to the formation of bone bonding between the scaffold and host bone. In addition, the introduced BCF improved the mechanical capacities of the scaffold via fiber breakage, fiber debond and fiber separation, and so on.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3