Corrosion performance and degradation mechanism of a bi-metallic aluminum structure processed by wire-arc additive manufacturing

Author:

Azar Amin S.ORCID,Lekatou Angeliki,Sunding Martin F.ORCID,Graff Joachim S.ORCID,Tzima Nicky,Diplas Spyros

Abstract

AbstractAn Al-5Mg alloy (AA5083) block, deposited over an AA6061 substrate by wire-arc additive manufacturing, was electrochemically tested along two different cross-sectional planes by cyclic polarization in 3.5 wt.% NaCl. The deposited layers and the interlayer boundaries showed similar polarization behavior regardless of the cross-sectional direction. The corrosion of both the substrate and the deposited layers was mainly attributed to the presence of relatively coarse intermetallic Al(Fe, Mn)Si particles. In the substrate, corrosion was governed by deep crevices along the interfaces of directionally aligned Al(Fe, Mn)Si particles with the Al matrix. The deposited layers and the interlayer boundaries showed pitting around numerous Al(Fe, Mn)Si particles and/or Al(Fe, Mn, Cr, Ti)Si at the interlayer boundaries, which were much finer compared to those of the substrate. The abundance of the fine precipitates and their intergranular location caused surface material removal, which was more extensive along the interlayer boundaries. The perpendicular z-y and z-x planes of the deposited block did not show significant differences in anodic polarization behavior. Differences were more distinct in the case of cathodic polarization. Some anisotropy in polarization behavior was noted through the thickness of the z-y plane that complies with the obtained tensile behavior.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3