Morphological and nanomechanical changes in tungsten in high heat flux conditions

Author:

Seo MinsukORCID,Echols John R.ORCID,Winfrey A. Leigh

Abstract

AbstractMorphological and nanomechanical alteration of tungsten in extreme environments, like those in edge localized modes in nuclear fusion environments, up to 46.3 GWm−2 heat fluxes were experimentally simulated using electrothermal plasma. Surface and subsurface damage to the tungsten is seen mainly in the form of pore formation, cracks, and resolidified melt instabilities. Mirco voids, rosette-type microfeatures, core-shell structure, particle enrichment, and submicron channels all manifest in the damaged subsurface. The formation of voids in the subsurface was determined to originate from the ductile fracture of hot tungsten by plastic flow but not developed to cracking. The voids were preferentially settled in grain boundaries, interfaces. The directionality of elongated voids and grains is biased to the heat flow vector or plasma pathway, which is the likely consequence of the thermally driven grain growth and sliding in the high-temperature conditions. The presence of a border between the transient layer and heat-affected zone is observed and attributed to plasma shock and thermal spallation of fractural tungsten at high temperature. Plasma peening-like hardening effects in tungsten were observed in the range of 22.7–46.3 GWm−2 but least in the case of the lowest heat flux, 12.5 GWm−2.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3