Abstract
AbstractThe increasing use of bioethanol fuel, as a promising carbon-neutral alternative to petroleum-based gasoline, has raised concerns on compatibility issues between bioethanol and the polymer components used in the automotive fuel system. Here, the performance of two commercial glass-fiber reinforced polyamide composites (polyamide 12 (PA12) and an aromatic highly-biobased polyamide (polyphthalamide, PPA)) exposed to a mixture of ethanol and gasoline (E25 fuel), was investigated at high temperature (120 °C). The polyamide matrices showed a fast and remarkably high fuel uptake. The sorbed fuel had a strong plasticizing effect on both materials, as revealed by the large decrease in the glass transition temperature and a 60% decrease in stiffness and strength. The PPA, however, sustained degradation better than the PA12, which experienced swelling-induced surface cracking and oxidation-induced embrittlement. The results suggest that care should be taken when using polyamide composites in ethanol-based fuel applications at this high temperature level.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献