Structure--property relationship and chemical durability of magnesium-containing borosilicate glasses with insight from topological constraints

Author:

Bisbrouck N.ORCID,Micoulaut M.,Delaye J. M.,Gin S.ORCID,Angeli F.

Abstract

AbstractThe initial dissolution rate of a series of multicomponent glasses is studied in order to discuss the influence of increasing magnesium content in the glass on this alteration regime and to highlight differences in behavior between calcium- and magnesium-bearing glasses. The application of MD-based topological constraint theory (TCT) is confronted to glass transition temperature (Tg) and initial dissolution rate (r0) on a glass series containing the main oxides of a French nuclear glass (AVM). In addition, a comparison between a reference magnesium-containing nuclear waste glass, AVMV4 and a proposed derived simplified composition N19M8 is performed regarding r0 values. Results indicate a similar behavior in this alteration regime for the two glasses, suggesting that this simple glass might be a good analogue to the complex one. Substituting calcium for magnesium decreases the initial dissolution rate by a factor two in the series, while an overall increase of magnesium leads to an increased dissolution rate. Analyses performed with TCT suggests that magnesium environment is better defined than calcium or sodium and may behave as an intermediate species. Finally, a correlation between the number of constraints per atom and Tg is established, while the model failed to link structural features to r0.

Funder

Électricité de France

Commissariat à l'Énergie Atomique et aux Énergies Alternatives

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3