Hardness and corrosion behavior of an Al-2Mn alloy with both microstructural and chemical gradients

Author:

Sun QingqingORCID,He Jing,Chen Jiabo,Chen Chunhong,Guo Xiaokai,Cao FaheORCID,Wang ShuaiORCID

Abstract

AbstractAn Al–2Mn binary alloy with gradient microstructure and chemistry near its surface was fabricated by combining surface mechanical treatment and post-ageing treatment. TEM results indicate that the minimum grain size of the topmost surface layer is below 100 nm. As revealed by SIMS results, Mn is depleted in the surface layer with ~2 μm in thickness, which is due to the “short-circuit” diffusion along grain boundaries and dislocation pipes. Microhardness and corrosion testing results revealed that both hardness and corrosion resistance increase substantially with this gradient design. XPS and Mott–Schottky results demonstrate that the oxide film of the gradient Al–Mn alloy is thinner and denser than that of the coarse-grained sample. Our design method of obtaining gradient distribution both in microstructure and chemistry near metal surface lights a pathway for overcoming the trade-off between properties such as strength and corrosion in 3000 series Al alloys.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3