Searching for chromate replacements using natural language processing and machine learning algorithms

Author:

Zhao ShujingORCID,Birbilis Nick

Abstract

AbstractThe past few years have seen the application of machine learning utilised in the exploration of materials. As in many fields of research—the vast majority of knowledge is published as text, which poses challenges in either a consolidated or statistical analysis across studies and reports. To address this issue, the application of natural language processing (NLP) has been explored in several studies to date. In the present work, we have employed the Word2Vec model, previously explored by others, and the BERT model—applying them towards the search for chromate replacements in the field of corrosion protection. From a database of over 80 million records, a down-selection of 5990 papers focused on the topic of corrosion protection were examined using NLP. This study demonstrates it is possible to extract knowledge from the automated interpretation of the scientific literature and achieve expert human-level insights.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

Reference46 articles.

1. Koch, G. et al. International measures of prevention, application, and economics of corrosion technologies study. NACE Int. 216, 2–3 (2016).

2. Hou, B. et al. The cost of corrosion in China. npj Mater. Degrad. 1, 1–10 (2017).

3. Resona Ltd. Impact of Corrosion in Australasia Report (The Australian Corrosion Association, 2021).

4. IARC. Some Inorganic and Organometallic Compounds. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man Vol. 2 (International Agency of Research in Cancer, Lyon,1973).

5. Frankel, G. S. & McCreery, R. L. Inhibition of Al alloy corrosion by chromates. Electrochem. Soc. Interface 10, 34 (2001).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3