Preparation and properties of Mg-Nd binary alloy MAO/SiO2@α-Fe2O3 organic composite coating

Author:

Sun Qiang,Jiang QuantongORCID,Wu Siwei,Liu Chang,Tang Heng,Shi Hao,Song Liying,Duan JizhouORCID,Hou Baorong

Abstract

AbstractIn order to make magnesium alloys better used in aviation, electronic information and other fields, it is necessary to improve their corrosion resistance and wave absorption properties. In this paper, a composite coating with corrosion resistance and wave absorption properties was prepared on magnesium alloy by micro-arc oxidation-organic coating technology. An organic absorbing coating with a thickness of about 40 μm was sprayed on the MAO coating containing Yb2O3 nanoparticles. Among them, the absorbing fillers in the organic coating are mainly SiO2 and α-Fe2O3. Three different mass ratios of SiO2 and α-Fe2O3 were set to 20%, 22.5% and 25%, respectively, to prepare three different MAO/SiO2@α-Fe2O3 organic composite coatings. The morphology, roughness, microstructure and chemical composition of the organic composite coating are characterized. The results show that after coating the organic composite coating, the roughness of the coating is significantly reduced, and the compactness and interlayer adhesion of the coating are significantly improved. The electrochemical test and SKPFM test of the organic composite coating were carried out. The results showed that with the increase of the mass ratio of SiO2 and α-Fe2O3, the corrosion resistance and stability of the organic composite coating increased, and the Volta potential also gradually moved up. The microwave absorbing properties of organic composite coatings were studied by vector network analyzer. The results show that the microwave absorbing properties of the coatings are positively correlated with the mass ratio of SiO2 and α-Fe2O3.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3