Effect of decades of corrosion on the microstructure of altered glasses and their radiation stability

Author:

Mir Anamul Haq,Jan Amreen,Delaye Jean-Marc,Donnelly StephenORCID,Hinks JonathanORCID,Gin Stephane

Abstract

AbstractUnderstanding the microstructural evolution of glasses during their interaction with water and radiation is of fundamental importance in addressing the corrosion of nuclear waste forms under geological disposal conditions. Here we report the results of more than 21 years of corrosion of two borosilicate glasses showing the formation of mesoporous C–S–H gels in Ca-bearing glasses and a mainly microporous microstructure in Al-bearing glasses. These porous corroded glasses were then irradiated with heavy ions to simulate the effects of recoil nucleus damage and monitored in real time using transmission electron microscopy with in situ ion irradiation. The ballistic collisions remarkably healed the porous corroded glasses to a pore-free homogeneous microstructure. Besides providing new insights and predictions about how doped glasses and actual waste forms may evolve under corrosion and irradiation, the results highlight the non-universal nature of the existing corrosion models and the important role that the glass composition and radiation damage play in the evolution of the microstructure during corrosion.

Funder

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3