Abstract
AbstractPolymeric materials and composites are well suited to support structures in marine conditions due to their corrosion resistance. However, their low glass transition temperature makes them vulnerable to softening at high temperatures. Hence, fire retardancy is a key aspect if these materials are selected to ensure stiffness under flammable conditions. In this paper, a fire-retardant polyurea coating for industrial applications is proposed. The aromatic diamine and aliphatic diisocyanate are believed to have a synergistic effect in improving flame properties. Moreover, various combinations of flame-retardant additives with aromatic and aliphatic-based polyurea are mixed to further improve fire-retardancy. Through the characterizations of their glass transition temperature and delay in the ignition, it indicates that the combination of Talc and melamine polyphosphate may provide an outstanding enhancement for the Titania-polyurea coating, and such enhancement may improve its original tensile and compression strength, and surface hardness as well.
Funder
Ministry of Education - Singapore
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献