Abstract
AbstractBiocatalytic degradation is an emerging strategy aiming for energy-efficient recycling of poly(ethylene terephthalate) (PET), the most commonly used thermoplastic polyester. Besides material composition and physico-chemical parameters, the degradation kinetics is co-determined by the evolving nanotopography. In this study, the 3-dimensional development of the surface characteristics of an amorphous PET film, reacted with a highly effective hydrolase enzyme for up to 24 h, was explored by vertical scanning interferometry and confocal microscopy. The spatio-temporal analysis unveiled that the degradation process is not uniform with respect to reaction time and spatial reactivity distribution. An early phase of an unspecific roughness evolution is followed by an advanced phase characterized by a circular degradation pattern, consisting of shallow pits that are steadily renewed over time. The data suggest a hindrance of degradation during the initial roughening process, demonstrating the potential role of targeted surface modification in the large-scale treatment of plastic waste.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献