Abstract
Abstract
Accelerated low water corrosion is a form of marine steel corrosion caused by bacterial activity. It has a global spread and is potentially responsible for billions of pounds of damage. We have determined in detail both the chemistry of corrosion products and the associated microbiology at a UK site. The corrosion products form a layered structure with iron sulfides at the steel surface and iron oxides and sulfates in contact with water. The iron sulfides are formed by reaction of steel with hydrogen sulfide formed by sulfate-reducing bacteria and are oxidised through a series of sulfur oxidation states by sulfide-oxidising bacteria, forming acid at all stages and encompassing the whole of the bacterial sulfur cycle. The bacteria involved are endemic in anoxic bed sediment, and the process is a response to the presence of steel as an electron donor, and the generation of anoxic microenvironments within corrosion products.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites
Reference54 articles.
1. Cheung, C. W., Walsh, F. C., Campbell, S. A., Chao, W. T. & Beech, I. B. Microbial contributions to the marine corrosion of steel piling. Int. Biodeterior. Biodegredation 34, 259–274 (1994).
2. Breakel, J. E., & Siegwart, M. Management of accelerated low water corrosion in steel maritime structures. Report C634 Construction Industry Research and Information Association (2005).
3. Beech, I. B. & Campbell, S. A. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment. Electrochim. Acta 54, 14–21 (2008).
4. Dzierzewicz, B., Cwalina, B., Chodurek, E. & Wilczok, T. The relationship between microbial metabolic activity and biocorrosion of carbon steel. Res. Microbiol. 148, 785–793 (1997).
5. Gubner, R. Biofilms and accelerated low-water corrosion of carbon steel piling in tidal waters. Ph.D. Thesis, University of Portsmouth (1998).
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献